Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Previous statistical studies have described the distributions and properties of whistler‐mode waves in Jupiter's magnetosphere, but explaining these wave distributions requires modeling wave propagation from their generation near the magnetic equator. In this letter, we conduct ray tracing of whistler‐mode waves based on realistic Jovian magnetic field and density models. The ray tracing results generally agree with the statistical wave distributions based on Juno measurements. The modeled ray paths show that high‐frequency waves generated near the equator are confined within 20° magnetic latitude due to Landau damping, low‐frequency waves can propagate to higher latitudes and lowerM‐shells, with changing wave normal angles, and a portion of low‐frequency waves could propagate to highMshells at high latitudes. Our modeling results provide a theoretical interpretation of whistler‐mode wave distributions and properties, providing essential insights for future radiation belt models at Jupiter.more » « lessFree, publicly-accessible full text available March 16, 2026
- 
            Abstract We report a new population of outer belt electron acceleration events ranging from hundreds of keV to ∼1.5 MeV that occurred inside the plasmasphere, which we named “Inside Events” (IEs). Based on 6 year observations from Van Allen Probes, we compare the statistical distributions of IEs with electron acceleration events outside the plasmasphere (OEs). We find that most IEs were observed atL < 4.0 at energies below ∼1.5 MeV, with weaker acceleration ratio (<10) and larger event numbers (peaking value reaching >200), compared to stronger but less frequently occurred (peaking event numbers only reaching ∼80) OEs that were mostly observed atL > 4.0. The evolution of electron phase space density of a typical IE shows signature of inward radial diffusion or transport. Our study provides a feasible mechanism for IE, which is the results of the inward radial transport of the electron acceleration in the outer region of outer belt.more » « less
- 
            Night-side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲ 100𝑘𝑒𝑉 electrons. However, recent low-altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night-side. This study presents a night-side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event-based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night-side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night-side relativistic electron precipitation.more » « less
- 
            Abstract The full spatiotemporal distribution of chorus wave‐induced relativistic electron microburst is modeled for chorus waves originated from different L shells and MLTs, based on the newly developed numerical precipitation model (Kang et al., 2022,https://doi.org/10.1029/2022gl100841). The wave‐particle interaction process that induces each microburst is analyzed in detail, and its relation to the chorus wave propagation effects is explained. The global distribution of maximum precipitation fluxes and scale sizes of relativistic microbursts is then obtained by modeling chorus waves at different L‐shells and local times. The characteristics of dawn and midnight sector microbursts have little difference, but the noon sector has much larger maximum flux and much smaller full width at half maximum, which may be due to dayside's low electron flux in the Landau resonance range. This suggests the controlling effect of keV electrons on the MeV electron precipitation intensity and properties and the overall relativistic electron loss in the outer radiation belt.more » « less
- 
            Abstract The present study compares a single‐band chorus wave against a banded chorus wave observed by Van Allen Probes at adjacent times, and demonstrates that the single‐band chorus wave is associated with an anisotropic electron population over a broad energy range, while the banded chorus wave is accompanied by an electron phase space density plateau and an electron anisotropy reduction around Landau resonant energies. We further compare banded chorus waves with different spectral gap widths, and show that a wider spectral gap is associated with electron isotropization extending to higher energies with respect to the equatorial Landau resonant energy. We suggest that early generated chorus waves isotropize electrons via Landau resonant acceleration, and the waves that propagate to higher latitudes isotropize electrons at higher energies. The isotropization extending to higher energies leads to a larger spectral gap of new chorus waves after electrons bounce back to the equator.more » « less
- 
            Abstract We investigate the response of outer radiation belt electron fluxes to different solar wind and geomagnetic indices using an interpretable machine learning method. We reconstruct the electron flux variation during 19 enhancement and 7 depletion events and demonstrate the feature attribution analysis called SHAP (SHapley Additive exPlanations) on the superposed epoch results for the first time. We find that the intensity and duration of the substorm sequence following an initial dropout determine the overall enhancement or depletion of electron fluxes, while the solar wind pressure drives the initial dropout in both types of events. Further statistical results from a data set with 71 events confirm this and show a significant correlation between the resulting flux levels and the average AL index, indicating that the observed “depletion” event can be more accurately described as a “non‐enhancement” event. Our novel SHAP‐Enhanced Superposed Epoch Analysis (SHESEA) method can offer insight in various physical systems.more » « less
- 
            Electron-acoustic waves (EAWs) as well as electron-acoustic solitary structures play a crucial role in thermalization and acceleration of electron populations in Earth's magnetosphere. These waves are often observed in association with whistler-mode waves, but the detailed mechanism of EAW and whistler wave coupling is not yet revealed. We investigate the excitation mechanism of EAWs and their potential relation to whistler waves using particle-in-cell simulations. Whistler waves are first excited by electrons with a temperature anisotropy perpendicular to the background magnetic field. Electrons trapped by these whistler waves through nonlinear Landau resonance form localized field-aligned beams, which subsequently excite EAWs. By comparing the growth rate of EAWs and the phase mixing rate of trapped electron beams, we obtain the critical condition for EAW excitation, which is consistent with our simulation results across a wide region in parameter space. These results are expected to be useful in the interpretation of concurrent observations of whistler-mode waves and nonlinear solitary structures and may also have important implications for investigation of cross-scale energy transfer in the near-Earth space environment.more » « less
- 
            Abstract We perform a comprehensive investigation of the statistical distribution of outer belt electron acceleration events over energies from 300 keV to ∼10 MeV regardless of storm activity using 6‐years of observations from Van Allen Probes. We find that the statistical properties of acceleration events are consistent with the characteristic energies of combined local acceleration by chorus waves and inward radial diffusion. While electron acceleration events frequently occur both at <2 MeV atL < 4.0 and at multi‐MeV atL > 4.5, significant acceleration events are confined toL > ∼4.0. By performing superposed epoch analysis of acceleration events during storm and non/weak storm events and comparing their geomagnetic conditions, we reveal the strong correlation (>0.8) between accumulated impacts of substorms as measured by time‐integrated AL (Int(AL)) and the upper flux limit of electron acceleration. While intense storms can provide favorable conditions for efficient acceleration, they are not necessarily required to produce large maximum fluxes.more » « less
- 
            Abstract We develop an Imbalanced Regression Artificial Neural Network model for the Auroral electrojet index (IRANNA) to predict the SuperMAG SML index, addressing the heavily imbalanced distribution of the SML data set. The data set contains mostly quiet‐time values of lesser importance and very few strong‐to‐extreme values of interest, such as those associated with super substorms. Traditional prediction models, which minimize mean squared error uniformly across the whole data set, are often skewed by this imbalance, prioritizing the lower, quiet‐time values and consequently underestimating strong geomagnetic events. The IRANNA model addresses this issue by using a customized weighting scheme in the loss function, enabling it to predict strong‐to‐extreme events accurately for the first time. The model takes solar wind parameters as inputs and predicts the logarithm of the absolute SML values. It does not rely on past values of the SML index, differentiating it from other models that use historical data for prediction. The model has demonstrated its ability to predict the peak amplitudes of strong‐to‐extreme events across various statistical analyses, event studies, and virtual experiments. Despite this success, challenges remain, particularly during localized electrojet events and when upstream solar wind data propagation is unreliable. This study emphasizes the importance of using imbalanced regression techniques, especially in space physics, where data sets are inherently skewed. It also highlights the potential of the IRANNA model to provide valuable insights into the magnetosphere's response to solar wind driving, improving space weather forecasting and offering new tools for investigating magnetospheric dynamics.more » « less
- 
            Abstract The proton radiation belt contains high fluxes of adiabatically trapped protons varying in energy from ∼one to hundreds of megaelectron volts (MeV). At large radial distances, magnetospheric field lines become stretched on the nightside of Earth and exhibit a small radius of curvatureRCnear the equator. This leads protons to undergo field line curvature (FLC) scattering, whereby changes to the first adiabatic invariant accumulate as field strength becomes nonuniform across a gyroorbit. The outer boundary of the proton belt at a given energy corresponds to the range of magneticLshell over which this transition to nonadiabatic motion takes place, and is sensitive to the occurrence of geomagnetic storms. In this work, we first find expressions for nightside equatorialRCand field strengthBeas functions of Dst andL* to fit the TS04 field model. We then apply the Tu et al. (2014,https://doi.org/10.1002/2014ja019864) condition for nonadiabatic onset to solve the outer boundaryL*, and refine our expression forRCto achieve agreement with Van Allen Probes observations of 1–50 MeV proton flux over the 2014–2018 era. Finally, we implement this nonadiabatic onset condition into the British Antarctic Survey proton belt model (BAS‐PRO) to solve the temporal evolution of proton fluxes atL ≤ 4. Compared with observations, BAS‐PRO reproduces storm losses due to FLC scattering, but there is a discrepancy in mid‐2017 that suggests a ∼5 MeV proton source not accounted for. Our work sheds light on outer zone proton belt variability at 1–10 MeV and demonstrates a useful tool for real‐time forecasting.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available